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Abstract 

The spinor fermulation of magnetagas dynamics tha t  was developed by 

the author i n  a previous paper i s  applied t o  the problem @f I sound 

wave i n  an e l e c t r i c a l l y  neut ra l  gas. This simple, one-dimensional. .problem 

serves ta i l lustrate the  e s s e n t i a l  features of  the formalism. The solut ion 

i s  completely r e l a t i v i s t i c  and, fer seund waves of macroscopic wavelengths, 

satisfies Euler's equatien, the continuity equation, and the  adiabat ic  

condition. For wavelengths ef the order ef atsmic dimensions, spin-dependent 

terms, which are csmpletely negl igible  f a r  macrescepic waves, become 

important and drastically alter the  form of the solution. 

s a lu t i en  sf the smnd wave problem has  the desirable  feature  

Thus the spinor 

t h a t  i t  

autematically breaks dawn a t  the poin t  where c l a s s i c a l  mechantcs breaks 

dawn, namelywhen the charac te r i s t ic  length Qf t h e  problem becomes 

atomic dimensiens . 
I ntreduct ian 

"his paper i s  a supplement t o  t h e  author's e a r l i e r  paper "Spinor 

Formulation of  Magnetogas Dynamics" (Goddard Space F l ight  Center X-64044-5 ) .  

I n  order t o  i l l u s t r a t e  the formalism developed i n  t h a t  paper (which shall 

henceforth be re fer red  t o  as 'T"), the  sp inor  f o r m i l a t i o n  of fluid d,pianics 

5s applied t:, t h e  one-dimensional problem of  a sound wave i n  an e l e c t r i c a l l y  

neut ra l  perfect gas. 

The so lu t ion  i s  car r ied  out by means of a perturbation on a simple 

zero-order solut ion which corresponds t o  a f l u i d  o f  constant density 
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.. mmring i n  the  posi t ive z direct ion w i t h  c o n s t a t  velocity.  By choosing 

the p a r t i c l e  spins, whose ro l e  i n  ay macroscopic problem i s  always 

ins igni f icant ,  t o  be aligned i n  the z direction, it i s  possible  t o  reduce 

two of the four spinor components t o  zero, thereby reducing the  calcula- 

t i ona l  burden. 

t i o n  of t he  problem, i s  next assigned a s inusoidal  time-independent var i -  

a t ion  i n  the z direction, and the spinor equations a r e  solved t o  f ind the  

spinor functions consistent with this form Of var ia t ion  i n  the enthalpy. 

The solut ion i s  carried out using t h e  f i rs t -order  per turbat ion zqroxima- 

t i o n  i n  which t h e  perturbation parameter i s  t h e  r a t i o  of t h e  m a x i m u m  change 

i n  t i e  specif ic  enthalpy t o  t h e  pa r t i c l e  rest-mass. 

t h i s  r a t i o  i s  always very small. 

.. 

The f lu id  enthalpy, which is regarded as the  driving func- 

For p r a c t i c a l  problems, 

Once t h e  s ? i n o r  equations have been solved for a sinusoidal  var ia t ion  

i n  enthalpy, spinor re la t ions  derived i n  I are  applied t o  ca lca la te  the 

f l u i d  flux density, which turns  out t o  be constant, ant? the  p a r t i c l e  density,  

which turns  out t o  have a sinusoidal var ia t ion  of t h e  same wavelength as 

the assigned var ia t ion  i n  the enthalpy. 1% i s  shown that  the  solut ion 

maintains conservation o f  p a r t i c l e  energy, which i s  j u s t  the  ccndition 

required by Euler 's  equation. That t h i s  i s  s o  can be seen from the f a c t  

t h a t  for t h i s  problem eq. (2-37) o f  I (Euler's equation), reduces t o  

which s t a t e s  t h a t  the sum of the k ine t ic  and therrcal energies per  p a r t i c l e  

must remain constant. 
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The spinor equations , l i k e  Euler's equation, m - i s t  be s-qplemerited 

by the  adiabat ic  condition (eq. (2-31) of 1): 

where se and 8% are t h e  changes i n  t h e  density and enthalpy respect ively 

as one moves along the wave, which appears t o  be s ta t ionary  because the 

f l u i d  i s  streaming i n  the  $z  di rec t ion  w i t h  exactly the same speed as t h a t  

with which the  wave i s  propagating i n  the -2 direction. 

t h a t  (2)  y i e lds  a condition on the f l u i d  veloci tywhich i s  j u s t  the usual 

expression for  the speed of sound i n  terms of the absolute temperature of 

I t  is shown 

t h e  gas. 

Finally, it is  shown tha t ,  although t h e  e f f ec t s  o f  pa r t i c l e  sp in  a r e  

completely negligible fo r  macroscopic wavelengths , they become important 

when the  wavelengths become of atomic dimensions, w i th  %he r e s u l t  t h a t  the 

c l a s s i c a l  solut ion i s  no longer valid.  

Yecessary Spinor Relations 

The spinor r e l a t ions  t h a t  will be needed are recapi tulated below. 

!he numbers t o  the  l e f t  are the  formula references i n  I. Since i n  the 

present  problem two of t he  sp ino r  components (f 
spinor equations take the following simplified form: 

2 t 
and x ) a r e  zero,  t he  

( 8-1a, b) 

where t h e  overhead bar  indicates  complex conjugation and 
4i % = -  GC 

u 

( 3 )  

(4) 
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where 
(8-lc) 

where seis the var iable  p a r t  of t h e  enthalpy, the constant pa r t  K, having 

been absorbed i n t o  the p a r t i c l e  rest-mass m. 

Once the  spinors are known, the flux density 4-vector euj  i s  calcu- 

l a t ed  from t h e  following relat ions:  

a i  
where the s implif icat ions t h a t  r e s u l t  when f = 

out. 

= 0 have been carried 

The invar ian t  density e i s  found from the r e l a t i o n  

j The p a r t i c l e  3 -ve loc i ty f l  i s  given by the  following well-known relat ion:  

c( E') 
Fao.  

j Finally,  the  p a r t i c l e  4-momentum + i s  found as follows: 
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Zera-Order Solut ien 

The zero-order function i s  taken t a  have the following form: 

9: = 0 

X a = O  
I 

where Ao, Bo, E, and P are  censtants.  

if the  following re la t ions  are sa t i s f ied :  

(10) i s  a so lu t ion  of (3) f o r  be= 0 

A, E-PC 
P I C '  

0, = 

8, E f P c  
m c a  A, = 

These can be s a t i s f i e d  only i f  

E'= ( r n ~ ' ) ~  + (PC)z 

which i s  the f a m i l i a r  r e l a t i v i s t i c  r e l a t ion  between the  energy E and the 

momentum P of a p a r t i c l e  having rest-mass m. 
n 

I t  w i l l  be convenient t a  work w i t h  t he  dimensionless quant i t ies  E and 

? defined as follows: 

. .  
Thus (12) assumes the following form: 

E ^ + =  I + ; '  
0, 
A. For convenience we intraduce the r a t i o  R = -: 
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The following 

Subst i tut ing 

i d e n t i t i e s  will be useful: 
A 

I + R 2 =  I R E  
h 

I -  R 2 =  Z R P  

10) i n t o  (7) and ( 6 ) ,  we f ind 

e a =  fi A h  

Subs t i tu t ion  of (18) i n t o  (8) y ie lds  

This equation i s  taken as the def in i t ion  of the constant veloci ty  V, which 

will l a t e r  be iden t i f i ed  w i t h  t he  velocity o f  sound. 

We note t ha t  the nonre l a t iv i s t i c  case i s  defined by the fellowing conditions: 

I n  this case 

N.R. case 

N.R. case 

Solu.tion i n  t h e  Presence ef a Sound Wave 

I n  order t o  generate a sound wave, we regard the change i n  spec i f i c  

enthalpy d %  as the dr iving function, and assign i t  the following fhc t iona l  form: 

where k i s  the wave number of t h e  sound wave. (For an ordinary sound wave 
-2 

i n  hydrogen a t  S.T.P. k N 10 cm-I.) $ appears i n  the spiner  equatiens 

as a c a n t r i b u t i m  to x: 
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A The dimensionless constant rx plays the ro l e  of the perturbation para- 

meter. For a s t rang  

pressure preduced by 

i s  ef order 10 . -15 

Because w e  wish 

L 

sound wave a t  S.T.P., f o r  which the va r i a t ion  in 

the wave is of the order 10  2 dyne/cm*, the cens tmt  3 A 

t@ satisfy the  spinor equations (3 )  anly t o  first order 

i n  4 , we can appreximate a term l i k e  f'(sk, by &,(sa). 
CZ 

We seek a selutisn @f ( 3 )  having the form 

a 
f) = o  
X ' =  0 

whereo( , p , 5 , and 7 are canstants. 
I 3, 

and x 
When (24) i s  subst i tuted 

The constant 3 has the e f f ec t  of producing phase changes i n  p 
that are equal i n  magmtude and spposite i n  sign. 

i n t o  (6) and (71, 3 dees not  appear ta first  order i n  a . It i s  enly 

i n  ( 9 )  that  it makes i tself  felt ,  and even there the e f f e c t  i s  negl igible  

C% 

fer macrescopic waves. I n  f a c t ,  as  an a l t e rna t ive  procedure, we could omit 

3 e n t i r e l y  and compensate f o r  the omission by replacing ?z  i n  the phase 

by an a rb i t r a ry  function of Z .  We s h a l l  l a te r  see what this function would 

have t o  be. 

The c o n s t a n t 7  i s  a measure of the degree t o  which t h e  constraint  

&(f,Xa) =d  (f'z") = 0 is  violated. It was pointed out i n  Section 8 

of I t h a t ,  although i n  pr inciple  t h i s  constraint  should be imposed, the  

e f f ec t  of neglecting it i n  any macroscopic problem is completely negligible. 

We s h a l l  see  that t h i s  i s  t rue  i n  the  case of  a sound wave. 
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I t  i s  to be noted t h a t  the two constants 3 and , being coeff ic ients  
I l. 

of the  s i n  kz term, s p e c i e  the p a r t  of f and x t h a t  i s  out of phase with . 

st, whose var ia t ion  i s  given by b c o s  kz. 

have no inf luence on macrescepic solutions. 

W e  shal l  see t h a t  these constants 

Only the in-phase constants o( 

and 6 are important f o r  such solutiens.  

"he spinor spec i f ica t ion  given i n  (24) i s  a solut ion of (3) ( t o  first 

order i n  & ) i f  the constants  have the follcrwing values: 
C X  h C I  

I ( A ) [  I - p ( E - B ) ]  

I (A )[ g:@(E+?)] 
p- (W2)" b ( = - ; i :  

p = 2 , 2  - (e/%)̂  

where 

Using (24), (25), and the  r e l a t ions  (6)-(8), we arrive a t  the follewing 

expressions: 
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. From (23)  and (30) w e  f ind  

A l l  of  the above results are, ef course, valid anly t o  first erder i n  c~~ n 

For all macrascepic sound waves 1 I n  fact ,  f o r  an ordinary 

sound wave i n  hydrogen k *lO-*cm-l and 5 N 10-am, so i n  this case 

t3 For comparisen, i n  the same case 

Thus (e/2,)"is completely negligible compared with p2. Using t h i s  fact  

i n  (26)-(31), w e  have 

m3 = eo (A) 

These expressions are, of course, completely r e l a t i v i s t i c .  

( 3 5 )  

(36) 
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From (27) and (28) we see t h a t  \ 

Thus the cont inui ty  condition i s  always f u l f i l l e d ,  even when 8 i s  not negligible.  

(38) i s  obviously a solut ion la (11, which i s  j u s t  Euler 's  equation fo r  t h e  

case o f  a sound wave. I n  (31), however, w e  f ind another term appearing i n  

the energy equation. 

which kN10-2cm-1, t h i s  term has a magnitude of the order 10 

compared w i t h  a magnitude of order 10 

small ex t r a  ener ig  contribution r e s u l t s  f r o m  the  presence of p a r t i c l e  spin. 

For  a strong sound wave i n  hydrogen a t  S.T.P. fo r  
-w.  erg as 

erg for t h e  term&cZut This -3 

For macroscopic sound waves i t  i s  completely negligible,  bu t  f o r  extremely 

shor t  wavelengths i t  becomes important . 
We shall r e tu rn  t o  t b  question of shor t  wavelengths, but  first w e  

sha l l  impose the adiabat ic  conditien ( 2 )  i n  order t o  arrive at the familiar 

A expressien fer the speed of sctund. We note that, to first order i n  - c= ' 
it i s  permissible t o  w r i t e  (2)  as follows: 

eo s %  = ( P I )  . R o s e  = ( u - O / c , T o  se (40) 

Frem (33) w e  have 

S-R- s e =  eo 
Subs t i tu t ing  (41) i n t o  (43) we have 

v = V(T-I)LpT0 

which is the well-known expression f o r  t h e  speed ef 

(42) 

sound i n  a perfec t  gas, 

where,c, is  the constant-pressure spec i f ic  heat per u n i t  mass and 

the  r a t i o  of  spec i f ic  heats. 

is 

To complete the solution, we apply ( 9 )  t 0  a r r ive  a t  t he  fallewing 

expression fer p a r t i c l e  momentum: 
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Fsr  the macroscopic case, the secsnd term an the r i g h t  s ide of (43b) i s  

completely negligible, and SB 4 * a n d r z  stand i n  j u s t  the l i nea r  r e l a t ion  

t a  each other t h a t  we would expect, 

It i s  abvious tha t  (43a) could be rewritten as follaws: 

This indicates  t ha t  i f  we had replaced Pz i n  the phase factor  i n  (24) by 

Pz-%,3 s i n  kz 

been unnecessary t o  include 5 i n  the square brackets multiplying A. and 

Be i n  (24).  

Spin-Velocity Resonance 

where 3 has the value given i n  (25c), then i t  would have 

h 

The expressiens (25) have the interesting feature t h a t  fer %=P or 

p = * X k  (45) 

the denominators V a n i s h ,  sg, t ha t  even fer A =  0 it would be psssible to 

have a wave of finite magnitude. 

t ha t  f o r  very shert waveler@,,h8, the spin-dependent forces t h a t  are neglib 

gible for  macroscepic waves become large eneugh t o  play the r s l e  that is 

played by the pressure i n  

The physical explanation fo r  t h i s  i8 

macrescepic seund wave. Thia phenemenoa could 

be called spin-velocity resonance. It  occurs sn ly  fo r  wavelengths af the  

erder of atomic dimensions, fer which c lass ica l  mechanics loses its validity. 

For example, f e r  waves i n  hydregen a t  S.T.P., resonance would occur at a 

wavelength of the order 

When resonance occurs, the solution given above i s  no longer valid 

(even if the r a t i o  (A’ca) were held constant) because the perturba- 8 
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t i o n  procedure i s  no longer valid. 

could be claimed f o r  such a resonance, it would be necessary t o  f ind  a 

solution t h a t  s a t i s f i ed  the constraint  $ (?, xu) SO,  because otherwise 

Moreover, before any physlcal r e a l i t y  

I -  

the  forces ar is ing from the neglect of this constraint, which are completely 

spurious and witheut physical meaning, weuld play an important role. 

The occurrence of resonance does, however, represent a breakdawn o f  

the c l a s s i ca l  solution and so serves to  answer the question Why, i f  the 

constant h plays no role i n  macroscopic problems, must it bo chosen +A 

have the value 1.0~X10-27erg-sec i f  our only i n t e r e s t  i n  the spinor alterna- 

t i v e  t e  Euler's equation i s  t o  solve macroscspic The answer 

i s  that ,  i n  order tCa give the correct breakdown point, namely the ps in t  

a t  which the character is t ic  length ef the problem becemes of atomic 

dimensions, the value assigned t e  h i n  the c lass ica l  spinor theory must 

be at l e a s t  appreximately equal t e  the value given above. 
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Note Cencerning Speed of Sound 

It  should be noted tha t , cp in  the expression (42) f o r  the speed af sound 

is  a function o f  the temperature To. This i s  most d i r e c t l y  seen from the 

' .  expressien f o r &  i n  terms of Boltzmann's constant k , p a r t i c l e  mass m, 

and number of  degrees of  freedom f: 

/ c p = $ ( l + f )  (46) 

But  t h e  mass m contains a contribution from the enthalpy do,  and s o  i s  

a function of To. 

mass mo t h a t  does not contain the enthalpy contributien: 

Nm let&; be the  spec i f ic  heat re fer red  t o  t h e  p a r t i c l e  

Since 

we have 

which when subs t i tu ted  i n t o  (45) yields 

According t o  (49) 

1;m v =  c v m  = C E  (51) 
9 re-" 

This l i m i t  cannot, however, be taken very ser iously since, as Synge poin ts  out  

on p.58 of h i s  bmk-en the relativistic gas, e q u t i e n  (2)  fer the adiabat ic  cendition 

i s  not val id  a t  temperatures f o r  which the thermal energy i s  comparable 

. w i t h  t he  res t  energy. 

. (f = 3) t h a t  Synge gives (p.77) i s  

The l imi t ing  speed of sound f o r  a mombmic gas 

C Y;, = 

it 
J.L.Spge, The Relativistic Gas (Inkdrscience Publishers, New Yerk, 1957) 


